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• FuturES framework optimises electricity scenarios with high renewables penetration.

• Reservoir and concentrating solar power modelled based on storage value.

• Feasible scenarios created with 81–100% renewables by 2050.

• Long-term energy storage helps to achieve low electricity costs.
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A B S T R A C T

Although electricity supply is still dominated by fossil fuels, it is expected that renewable sources will have a
much larger contribution in the future due to the need to mitigate climate change. Therefore, this paper presents
a new framework for developing Future Electricity Scenarios (FuturES) with high penetration of renewables. A
multi-period linear programming model has been created for power-system expansion planning. This has been
coupled with an economic dispatch model, PowerGAMA, to evaluate the technical and economic feasibility of
the developed scenarios while matching supply and demand. Application of FuturES is demonstrated through the
case of Chile which has ambitious plans to supply electricity using only renewable sources. Four cost-optimal
scenarios have been developed for the year 2050 using FuturES: two Business as usual (BAU) and two Renewable
electricity (RE) scenarios. The BAU scenarios are unconstrained in terms of the technology type and can include
all 11 options considered. The RE scenarios aim to have only renewables in the mix, including storage. The
results show that both BAU scenarios have a levelised cost of electricity (LCOE) lower than, or equal to, today’s
costs ($72.7–77.3 vs $77.6/MWh) and include 81–90% of renewables. The RE scenarios are slightly more ex-
pensive than today’s costs ($81–87/MWh). The cumulative investment for the BAU scenarios is $123-$145 bn,
compared to $147-$157 bn for the RE. The annual investment across the scenarios is estimated at $4.0 ± 0.4
bn. Both RE scenarios show sufficient flexibility in matching supply and demand, despite solar photovoltaics and
wind power contributing around half of the total supply. Therefore, the FuturES framework is a powerful tool for
aiding the design of cost-efficient power systems with high penetration of renewables.

1. Introduction

Electricity generation is responsible for approximately 25% of
global greenhouse gas (GHG) emissions. As a result, the
Intergovernmental Panel on Climate Change (IPCC) has highlighted the
importance of the decarbonisation of electricity supply and deployment
of renewables as key mitigation measures for the sector [1]. A recent

study showed that, between 2014 and 2016, the global energy-related
CO2 emissions have remained constant after decades of increase [2].
The development of renewable technologies, such as solar photo-
voltaics (PV) and wind, has been crucial in achieving this, allowing
them to become more competitive and triggering further increase in
investment in recent years. This has also been stimulated by policy in
different regions. For example, in the European Union (EU), the
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Renewable Energy Directive [3] sets a target of 34% of renewable
electricity by 2020. As a result, the share of renewable electricity in the
EU reached 30% by 2016 [4]. In the US, for instance, the contribution
of renewable electricity in the same year was 15% [5]. In both regions,
wind and solar PV play a significant role, in addition to hydro power.

Renewable power options are predominantly capital-cost intensive
as opposed to fossil-fuel technologies which are marginal-cost plants,
driven by the operational and fuel costs. This poses new challenges to
traditional electricity markets which are mostly based on marginal costs
[6]. As renewables have variable costs close to zero, they can lead to
low system marginal costs (or spot prices) which discourages investors
to fund new projects [7,8]. This could result in a market failure in the
absence of appropriate signals or mechanisms to stimulate investment.
Some South American countries have experienced a similar situation
due to a high contribution of hydropower which has high capital but
very low marginal costs. They have resolved this issue through long-
term contracts for investments while keeping short-term markets for
energy trading to secure electricity dispatch at optimal costs at all times
[7].

In addition to the market challenges, it is also crucial to ensure that
future electricity systems dominated by renewables can provide reliable
supply to match the demand. Achieving this requires sufficient flex-
ibility in the system to mitigate against the variability, intermittency
and unpredictability of supply from wind and solar PV [9]. In the last
decades, flexibility has been achieved primarily via hydropower,
pumped hydro storage systems and oil and gas power plants, with the
support of base-load sources, such as nuclear, coal, biomass and run-of-
river hydropower. In future power systems shaped by renewables,
storage systems will play a key role in achieving flexibility [10].
Nowadays, depending on energy resource availability and geography,
countries can take advantage of reservoir and pumped hydropower or
concentrating solar power (CSP) thermal storage. Others that lack such
natural resources can rely on battery energy storage solutions. With the
expected significant increase of renewables in future electricity systems,
it will become progressively more important to develop optimal system
configurations with sufficient flexibility to ensure security of supply.

In an attempt to contribute to this effort, this paper proposes a new
framework – Future Electricity Scenarios (FuturES) – with the aim of

Nomenclature

Parameters

Bg t
plan
, scheduled new-build capacity of technology g in year t

(MW)
bg learning rate (%)
Cg t

fuel
, fuel cost of technology g in year t ($/unit fuel)

CFg t, capacity factor of technology g in year t (%)
CO t

tax
2 carbon tax in year t ($/t)

CO g
emi

2 CO2 emission factor for technology g (kg/MJ)
cvg calorific value of fuel used by technology g (MJ/unit fuel)
Dg t

total
, total capacity of technology g decommissioned in year t

(MW)
Dg t

plan
, total capacity of technology g planned to be decommis-

sioned in year t (MW)
effg power plant efficiency for technology g (%)
Eg t, electricity generated by technology g in year t (MWh)
Et

demand electricity demand in year t (MWh)
fg t

inv
, annualised capital cost of technology g in year t ($/MWh)

fg t
OM
, operating and maintenance fixed cost for technology g in

year t ($/MWh)
Ig t

capital
, 0 initial capital cost of technology g ($/kW)

LCOEg t, levelised cost of electricity for technology g in year t
($/MWh)

Ng
max maximum annual new-build capacity allowed for tech-

nology g (MW)
Pg t

total
, total installed capacity of technology g in year t (MW)

Pg init
total
, initial total installed capacity of technology g (MW)

POg
max maximum annual phase-out capacity of technology g

(MW)
POg t

quota
, phase-out quota capacity of technology g in year t (MW)

Qt
NCREmin minimum share of electricity from non-conventional re-

newable sources in year t (%)
Qg t

tech
,

max maximum share of electricity from technology g in year t
(%)

q share of the total phase-out electricity (%)
rg discount rate (%)
Sg fraction of investment costs used to estimate operating and

maintenance fixed costs (%)
St

loss annual electricity loss in year t (%)
SNCREmin minimum share of non-conventional renewable electricity

in the target year (%)
St

NCRE
0

min minimum share of non-conventional renewable in the

starting year (%)
Sg

techmaxEnd maximum electricity share of technology g in the target
year (%)

t NCREmin target year for non-conventional renewable electricity
tg

phaseoutstart starting year for the phase-out of technology g
tg

techmaxInit year when a maximun electricity share of technology g
starts

vg t
carbon
, carbon tax payable for technology g in year t ($/MWh)

vg t
fuel
, fuel cost for technology g in year t ($/MWh)

vg t
OM
, operating and maintenance variable cost for technology g

in year t ($/MWh)
Wg t, global cumulative installed capacity of technology g in

year t (MW)
Wg t, 0 starting global cumulative installed capacity of technology

g (MW)
Z total system cost (objective function) ($)

g
NCRE binary parameter denoting if a technology is non-con-

ventional renewable
g
hydro binary parameter denoting if a technology is hydropower
g
learning binary parameter denoting if technology g has a learning

rate
g lifespan of technology g (years)

g
phaseout binary parameter denoting if technology g is being phased-

out
g
techmax binary parameter denoting if technology g must achieve its

maximum quota in a given year

Variables

Varg t
new
, new-build capacity of technology g in year t (MW)

Varg t
phaseout
, phase-out capacity of technology g in year t (MW)

Subscripts

g technology type
t year
t0 starting year
tend target year

Sets

G set of technologies
GS set of technologies with storage
T set of years in the planning horizon

C. Gaete-Morales, et al. Applied Energy 250 (2019) 1657–1672

1658



designing optimal power systems dominated by renewables. The
FuturES framework integrates systems optimisation with an economic
dispatch model. The optimisation model, developed as part of this
study, is a deterministic power system expansion model which gen-
erates optimised electricity scenarios by minimising total system costs
under perfect market competition conditions. The economic dispatch
model PowerGAMA (Power Grid and Market Analysis) [11] evaluates
the extent to which the resulting optimised scenarios can operate with
flexibility by implementing the storage value approach [12] for water
reservoirs and CSP with storage. Therefore, FuturES allows the mod-
elling and optimisation of future electricity scenarios where CSP and
hydropower act as backup options in systems with high penetration of
renewables. The framework is generic and can be used in different re-
gions and countries. To demonstrate its application, Chile is considered
as an illustrative case, as the country has very ambitious plans for

increasing the contribution of renewables in the electricity mix up to
100% by 2050. This is the first study of its kind for Chile, aimed at
providing guidance to the energy sector and policy makers on designing
techno-economically optimal electricity systems with high penetration
of renewables, capable of matching supply and demand.

The framework is presented in Section 3, followed by its application
in Section 4. Prior to that, the next section gives an overview of lit-
erature, focusing on challenges in power system modelling and opti-
misation.

2. Literature review

Optimisation of power systems has been used extensively over the
years for a range of purposes, including power system planning, trading
and monitoring of market performance [13–15]. Typically, linear

Fig. 1. FuturES framework for defining optimal power scenarios. [CFt0: capacity factor at starting period, CFtend: capacity factor at target year, LP: linear pro-
gramming, CBC: COIN-OR Branch-and-Cut mixed integer linear programming solver with an integral linear programming solver.]
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programming (LP) is used for optimisation of power systems. A wide
variety of LP models exists, of which MARKAL [16] and its successor
TIMES [17] are probably the most widely used commercial models.
They both enable optimisation of future scenarios at a national level
based on supply and demand requirements. Equivalent open-source
models are also available, including OSeMOSYS [18], an optimisation
model for long-term energy planning, and PyPSA [19], an open-source
toolbox for simulating and optimising power systems. Furthermore,
Switch 2.0 [20] provides a modelling platform for planning transitions
to low-emission electric power grids. Finally, Calliope [21] and URBS
[22] model energy systems to satisfy heat, power and gas demand with
a focus on planning and flexibility of the systems at different spatial
resolutions.

Currently, the main challenge in power system optimisation is to
design future systems capable of operating reliably with high penetra-
tion of renewables [23]. Given the large heterogeneity of countries and
regions with respect to renewable resources, each power system may
require different models to represent differing conditions.

A further challenge is modelling of energy storage [24]. This is
largely due to two main reasons. First, storage dispatch may vary sig-
nificantly with high capacity of variable-supply technologies, requiring
the model to be able to deal with short-term storage. Secondly, high
contribution of storage may act as a price-maker, as is the case, for
example, with water reservoirs.

Various methods have been developed to deal with these challenges,
as described by Schill and Zerrahn [25]. For example, Hemmati et al.
[26] developed a generation expansion planning model where energy
storage systems enable flexibility by replacing peak-load fossil fuel
options. A similar approach was considered by Balducci et al. [27] who
proposed a taxonomy for assigning benefits of services provided by
energy storage systems.

Hydropower from reservoirs is considered a long-term storage op-
tion that can play an important role in power systems where it has a
significant contribution, such as in Norway [12]. Wolfgang et al. [12]
highlighted that the marginal value of water for different reservoir le-
vels, periods and zones enables an optimal dispatch of hydropower by
exploiting the long-term storage characteristics of reservoirs. To de-
termine the water storage value and allow an optimal dispatch in hy-
drothermal power systems, different stochastic optimisation models
have been developed [28], with that developed by Pereira being one of
the most used models for this purpose [29]. Stochastic methods can be
used where the installed capacity and the energy storage of hydropower
plants are known. However, they have high computational require-
ments when determining the optimal capacity of technologies in a
generation expansion planning model [20].

Several models focus on long-term storage value of hydropower and
oversimplify short-term storage of CSP. The latter is addressed well by
PowerGAMA [11] which extends previous models to consider short-
term storage in CSP and flexible load. Therefore, this model has been
selected for use in the optimisation framework proposed here, in
combination with linear programming (LP).

Various other optimisation and decision-support frameworks have
been developed previously focusing on electricity. However, most are
aimed at either local or regional levels, or focus on single or a limited
number of technologies. For example, Fichera at al. [30] developed a
tool combining spatial and energy issues with optimisation for aiding
urban planners in developing energy strategies. The authors showed
how local production of electricity can be determined due to the in-
troduction of renewable energy. Saber et al. [31] focused on wind en-
ergy only, proposing a multi-objective framework for expansion of
energy storage in systems with high wind penetration. Concentrating on
biomass only, Vadenbo et al. [32] combined optimisation with con-
sequential life cycle assessment to evaluate future bioenergy scenarios
for Switzerland for the year 2035. A scenario-generation approach has
also been proposed for integrating wind, solar PV and small hydro-
power systems [33]. A two-stage stochastic optimisation model is used

for this purpose to minimise the probability of failing to deploy reserve
in real-time. An example study that went beyond single or few tech-
nologies to consider a full electricity system at the national level is that
carried out for the UK [34]. The authors developed a multi-period
mixed-integer optimisation to determine the most sustainable 2050
electricity scenarios with respect to life cycle costs and environmental
impacts. Another study at the national level, based in Germany [35],
integrated battery storage into an optimisation model to determine the
optimal configuration of the German electricity system for the year
2040.

However, as far as the authors are aware, there are no optimisation
frameworks that enable consideration of future integrated electricity
scenarios with high penetration of renewables at a national level as
proposed in this work. This is detailed in the next section.

3. Methodology

3.1. FuturES framework

As can be seen in Fig. 1, the FuturES framework consists of two
models: an LP power system expansion (PSE) model and an economic
dispatch (ED) model. The former has been developed in this study
(Section 3.1.1) and the latter is based on the open-source PowerGAMA
model (Section 3.1.2).

The PSE model generates optimal scenarios for future electricity
systems by minimising total system costs. The main variable in this
model is the new-build capacity for each technology, which is decided
by the model based on each technology’s levelised cost of electricity
(LCOE) and power output. These two are in turn dependent on capacity
factors. Previous studies have assumed constant capacity factors
[34,36]. However, this assumption holds only if the electricity mix
remains similar over time – if new technologies are included, it is likely
that the capacity factors will change. To overcome this problem, a
second model based on minimisation of marginal costs through eco-
nomic dispatch (ED) is coupled with the PSE model. The ED model
integrates the outputs from PSE (the total capacity of each technology)
with technical parameters, such as variable or marginal costs of tech-
nologies, wind profiles, solar radiation and water inflow. It uses these
parameters to determine the capacity factor of each technology, hourly
marginal costs, filling levels of storage systems, energy spillage (solar,
wind and run-of-river energy harvested but not dispatched) and load
shedding.

The load shedding and capacity factors are considered indicators of
flexibility. When there is no load shedding and the resulting capacity
factors from the ED model are equal to the capacity factors assumed in
the PSE model, then the scenario is considered to be feasible. If the
capacity factors are different, the LCOE initially estimated in the PSE
model will be inconsistent with their expected operation. This leads to
an under– or overestimation of the costs of some technologies.
Therefore, the capacity factors of the PSE model are replaced by the
capacity factors obtained from the ED model and a new iteration be-
gins, as shown in Fig. 1. The starting year (t0) of the PSE model
maintains the actual capacity factors of the technologies in that year.
The resulting capacity factors of the optimal ED model are set as the
capacity factors for the last year (tend) of the evaluating period and the
capacity factors between years t0 and tend are estimated through linear
interpolation. Consequently, the combined PSE and ED models continue
to iterate until the model converges. In other words, the two models run
until the capacity factors of PSE and ED by year tend are similar and
reach the condition of feasibility of no load shedding.

The PSE model has been developed using Pyomo, an open-source
tool for optimisation applications [37] with a COIN-OR Branch-and-Cut
(CBC) mixed integer linear solver, which also contains a linear pro-
gramming solver [38]. PowerGAMA [11], used for the ED model, was
developed using the Python programming language. Each model is
described in turn in the next sections.
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3.1.1. Power system expansion model
A linear programming problem can generally be formulated as:

=
minimise f x
s t h x a

g x
x

( )
. . ( )

( ) 0
n (1)

where f x( ) is an objective function, h x( ) represents equality and g x( )
inequality constraints, and x is a vector with n real variables. The ob-
jective function and constraints are defined in the following sections.

3.1.1.1. Objective function. The objective function Z represents the total
system costs over the life cycle of each power technology over the
planning period and is to be minimised as follows:

=Z min E LCOE· ·
g G t T g t g t, , (2)

where Eg t, is electricity generated by technology g in year t, while
LCOEg t, is the levelised cost of electricity for technology g in year t. Eg t,

is a function of two types of variables, Varg t
new
, and Varg t

phaseout
, , that

represent respectively the new-build capacity online in a given year and
the existing capacity awaiting phase-out. For simplicity, these are
included as part of the total installed capacity (Pg t

total
, ) function as

shown below:

=E CF P8760· ·g t g t g t
total

, , , (3)

where CFg t, is the capacity factor of a technology in year t and 8760 is
the total number of hours in a year. The total installed capacity of
technology g in year t, Pg t

total
, , is defined as:

=
+ + <

+ +
P

P B Var D Var t t

P B Var D Var t t

, if 1

, if 1g t
total g init

total
g t
plan

g t
new

g t
total

g t
phaseout

g t
total

g t
plan

g t
new

g t
total

g t
phaseout,

, , , , , 0

, 1 , , , , 0

(4)

As can be seen in Eq. (4), Pg t
total
, is made up of the following:

• initial existing capacity (Pg init
total
, ) or the capacity in the previous year

(Pg t
total
, 1);

• a new-build capacity (Bg t
plan
, ) under construction;

• a new-build capacity (Varg t
new
, ) determined by the model (main de-

cision variable); and
• total decommissioned (Dg t

total
, ) and phase-out capacities (Varg t

phaseout
, ).

Varg t
phaseout
, is a decision variable considered for technologies like coal

that will eventually be phased out. The decision variables are all in the
domain of positive real numbers.

The total decommissioned capacity (Dg t
total
, ) constitutes old plants

that are planned to be decommissioned (Dg t
plan
, ) and new-build capacity

that has reached the end of its lifespan within the modelling period
(Varg t

new
, g ), where g represents the lifespan of technology g:

= +D D Varg t
total

g t
plan

g t
new

, , , g (5)

LCOEg t, is defined as the sum of levelised and annualised investment
costs ( fg t

inv
, ), fixed and variable operating and maintenance costs (O&M)

( fg t
OM
, and vg t

OM
, , respectively), fuel costs (vg t

fuel
, ) and carbon tax (vg t

carbon
, ):

= + + + +LCOE f f v v vg t g t
inv

g t
OM

g t
OM

g t
fuel

g t
carbon

, , , , , , (6)

The levelised and annualised investment cost is defined as follows:

=
+ +

+f
I

CF
r

r
W
W8.76·

·
1 (1 )

· 1 1g t
inv g t

capital

g t

g

g
g
learning g t

g t

log b

,
, 0

,

,

, 0

(1 )

g

g2

(7)

The investment cost of a technology in a particular year is estimated
taking into account its initial capital cost (Ig t

capital
, 0 ) which is annualised

considering a discount rate (rg) and technology lifespan ( g). The ca-
pacity factor (CFg t, ) and 8.76 convert the annual investment cost to
levelised cost of electricity from $/kW-yr to $/MWh. The cost must also
be adjusted through time based on a learning rate (bg) for that parti-
cular technology. The learning rate g

learning is a binary parameter, de-
noting if a technology has a learning rate (1) or not (0). The application
of the learning rate is based on the global cumulative installed capacity
of the technology at the initial modelling time (Wg t, 0) and the global
installed capacity of the technology in year t (Wg t, ).

O&M fixed costs are defined as follows:

= +f
I S

CF
W
W

·
8.76·

· 1 1g t
OM g t

capital
g

g t
g
learning g t

g t

log b

,
, 0

,

,

, 0

(1 )g2

(8)

where Sg is a fraction of investment costs used to estimate O&M fixed
costs. Fuel costs are equal to:

=v
C

cv eff
3600·

·g t
fuel g t

fuel

g g
,

,

(9)

where 3600 is a factor to convert MJ to MWh; Cg t
fuel
, is the cost of fuel per

unit of mass or volume, cvg is the calorific value of the fuel for tech-
nology g in MJ per unit of mass or volume; and effg is the fuel efficiency
of the technology. Cg t

fuel
, and cvg are parameters expressed in different

units depending on the type of fuel; for example, for coal, natural gas
and diesel, the units are tonnes, Nm3, and billion barrels (bbl), re-
spectively.

Carbon costs are estimated taking into account carbon tax per tonne
of CO2 emitted (CO t

tax
2 ), the carbon emission factor (CO g

emi
2 ), the power

plant efficiency and a factor 3.6 to convert MJ to kWh, as shown below:

=v
CO CO

eff
3.6· ·

g t
carbon t

tax
g
emi

g
,

2 2

(10)

3.1.1.2. Energy balance. The power demand is estimated at the
consumer side (Et

demand); therefore, the energy loss in the grid (St
loss) is

included in the estimates of the total energy demand at the supply side
+E S( (1 ))t

demand
t
loss . Total energy demand must be equal to or lower

than the electricity supply, as follows:

+E E S t T(1 )
g G g t t

demand
t
loss

, (11)

3.1.1.3. Non-negative total capacity. For each technology, the total
capacity in each year must be non-negative. This constraint is
essential; otherwise, if more economical technologies are available,
the model can set a phase-out capacity exceeding the sum of the other
capacity variables in Eq. (4), creating an illogical condition. This
constraint is defined as follows:

P g G t T0 ,g t
total
, (12)

3.1.1.4. New-build capacity. In each year the total electricity demand
must be satisfied by the supply. When the current installed capacity
cannot fulfil the demand, the model evaluates the available
technologies to decide the new-build capacity. g

phaseout is a binary
parameter that indicates if a technology is going to be phased-out and,
if so, that particular technology cannot be eligible for new-build
capacity. For the rest of the technologies, the new-build capacity
must be equal to or lower than the sum of maximum annual new-
build capacity (Ng

max), total decommissioning capacity and a phase-out
quota capacity (POg t

quota
, ), as follows:
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+ + =

=
Var

N D PO g G t T

g G t T

, if 0 ,

0, if 1 ,g t
new g

max
g t
total

g t
quota

g
phaseout

g
phaseout,

, ,

(13)

The phase-out quota capacity POg t
quota
, represents the capacity of

technology g with a share (q) of the total phase-out electricity in a
particular year. The share q ensures that the PSE model does not select
only the most economical options to replace the phased-out power
plants. In other words, q ensures that more than one power option is
invested in, thereby guaranteeing some supply diversity. The phase-out
quota is defined by the following equation:

=PO
q Var CF

CF
· ·

g t
quota g G g t

phaseout
g t

g t
,

, ,

, (14)

3.1.1.5. Phase-out of plants. Whether a technology has been selected to
be phased-out is denoted by a binary parameter g

phaseout (=1). If not,
the phase-out capacity decision variable (Varg t

phaseout
, ) must be equal to

zero. Technologies that are to be phased out are assigned a phase-out
starting year (tg

phaseoutstart). Before that year, the phase-out capacity
decision variable must be zero, otherwise the capacity must be equal
to or lower than a maximum annual phase-out capacity (POg

max) for a
particular technology, as follows:

=

=

= >

Var

g G t T

t t g G

PO t t g G

0, if 0 ,

0, if 1 and

, if 1 and
g t
phaseout

g
phaseout

g
phaseout

g
phaseout

g
max

g
phaseout

g
phaseout

,
start

start

(15)

3.1.1.6. Hydropower capacity retention. A binary parameter g
hydro

indicates whether a technology is a hydropower option. This is
necessary to account for the unique system benefits of hydropower
options, such as flexibility, reliability, security and in-built storage
capacity. Due to these benefits, it is assumed that system operators with
existing hydropower capacity would not wish to lose that capacity.
Therefore, the new-build capacity of hydropower must be equal to or
higher than the total decommissioning capacity, so that the total
hydropower capacity remains constant or increases:

=Var D g G t T, if 1 ,g t
new

g t
total

g
hydro

, , (16)

3.1.1.7. Non-conventional renewable electricity. Many countries have
implemented policy frameworks to enable corporate sourcing of
renewables, such as quota support schemes and green certificates
[39,40]. Examples of such countries in Europe include the
Netherlands, Norway, Sweden and the UK and in South America,
Argentina, Brazil, Chile and Mexico. Australia, China, India and the
US also have such policy frameworks in place. To reflect this in the
model, non-conventional renewable electricity (NCRE) is defined to
include all renewable options except large hydropower plants. A
minimum quota (Qt

NCREmin) for the electricity supplied by NCRE
options is set to increase with time. A binary parameter ( g

NCRE) has
been established so that the model can identify the NCRE options as
follows:

E Q E t T·
g G g

NCRE
g t t

NCRE
g G g t, ,min

(17)

The minimum quota (Qt
NCREmin) increases through time linearly;

therefore, SNCREmin represents the quota share at a target year (t NCREmin),
usually set in energy policies, while St

NCRE
0

min is the quota at the starting
year. After the target year, the quota remains constant as defined below:
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(18)

3.1.1.8. Maximum energy share of a technology in the production mix. A
constraint is defined to allow specific technologies to be set a quota
(Qg t

tech
,

max) of electricity that ensures an electricity production equal to or
lower than the quota (Sg

techmaxEnd) in the last year of the planning horizon.
The constraint starts in a predefined year (tg

techmaxInit) where the existing
quota (Qg t

tech
,

max) of the technology is set at 100%, after which point the
quota decreases linearly through the years until reaching the target
quota (Sg

techmaxEnd). The technologies achieving their maximum possible
quota in any given year can be identified by the model due to a binary
parameter ( g

techmax) equal to 1. The constraints are defined as follows:
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3.1.2. Economic dispatch model
The PowerGAMA model has been implemented within FuturES to

run economic dispatch for scenarios from the PSE model, focusing on
the implementation of storage strategies to enable high penetration of
renewables.

Storage values have been estimated as follows:

=v v v v i G h f· . · . , [0. .8760], [0%. .100%]i h i i f i h S, ,0 , , (21)

where vi h, is the storage value of a technology with storage capacity i at
hour h. It depends on a base storage value vi,0, relative storage value
related to the filling level of the storage v .i f, , and a relative storage
value which relates to time of the year; f is the filling level and varies
according to the optimal dispatch. The base storage value is a para-
meter set by the modeller based on a tuning process [11]. The filling
level and time-related storage values are specific to local conditions and
are discussed in the next section.

4. FuturES application: Electricity scenarios for Chile

As mentioned earlier, application of the FuturES framework is il-
lustrated through the case of Chile. This section provides motivation for
the study, followed by the input data used in the modelling.

Chile accounts for only 0.22% of global GHG emissions [41]. De-
spite that, the country has been shown to be very vulnerable to the
effects of climate change [42]. In an attempt to mitigate these effects,
Chile has committed to reducing GHG emissions by ratifying the Paris
agreement on climate change [43]. One of the priority sectors identified
for reduction of emissions is electricity generation.

More than half of Chilean electricity is supplied by fossil-fuel
sources, with the rest being from renewables (Fig. 2). Among the latter,
hydropower has the highest share (35%). Over the past few years, Chile
has started deploying significant solar PV and wind capacity, with the
latter doubling each year since 2014 [44]. This has been possible owing
to technology cost reductions, the successful implementation of public
policies in the sector and the outstanding resource availability in some
areas of the country [40,45,46]. The new energy policy sets two targets
for the penetration of renewables in the electricity system: 60% by 2035
and 70% by 2050 [47]. However, a recent study has estimated that
renewable sources will have a contribution of about 75% by 2030 [48],
suggesting that both targets can be met much sooner than envisaged by
the policy. Therefore, the government is considering increasing the
2050 target to 90% or even to 100% [49].

For that reason, the FuturES framework models two main scenarios
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for the year 2050: Business as usual (BAU) and Renewable energy (RE).
The former considers both the fossil and renewable options in the mix
while the latter aims to phase out fossil fuels and maximise the con-
tribution of renewables. Each scenario has two sub-scenarios, differing
by the total capacity of different technologies deployed. The inventory
data and assumptions are presented below, together with a description
of how the scenarios have been developed.

4.1. Electricity technologies and resources

Eleven electricity-generating options have been considered as part
of this work. These have been selected by considering the current op-
tions (in the baseline year 2015), as well as technologies that are not yet
part of the national power system but have high potential for future
deployment, such as CSP with energy storage and geothermal [50]. The
technologies are divided into different categories (Fig. 3), based on
whether they are conventional (fossil fuels and hydro), non-conven-
tional (all renewables except hydro) and/or able to store energy. De-
pending on the type of technology, the constraints described in Sections
3.1.1.5–3.1.1.8 may apply.

4.1.1. Technical and economic parameters for the PSE model
The main technical and economic parameters and assumptions for

each technology are presented in Tables 1 and 2. Note that all costs are
in US$. An inflation rate has not been included in the analysis and,
therefore, all the costs are based on the base year 2015. Considering
that Chile has historically maintained inflation to a level that has al-
lowed price stability, this assumption should not affect the results over
the planning horizon [51].

The maximum annual new-build capacity (Ng
max) has been calcu-

lated considering the current technical potential for each technology,
along with the historical trend of investment (see Fig. S1 and Table S1
in the Supporting Information (SI)). Based on the historical investment
trends, rates of investment can be estimated directly from real-life
outcomes in different periods. This is particularly useful because such
rates reflect underlying aspects that cannot be quantified easily, such as
the difficulty in obtaining environmental permits for new hydropower
installations due to their historically low social acceptability.

In Chile, hydropower reservoirs and run-of-river have both had a
constant increase in capacity of 171 MW/yr between 1990 and 2017
(Fig. S1). Coal power has had steady investment between 2008 and
2018 of 348 MW/yr. Oil power had a short period of high investment

between 2004 and 2010 at a rate of 270 MW/yr, while gas power in-
creased at a rate of 347 MW/yr from 1995 to 2008. Finally, renewable
options have had a high increase in investment between 2013 and 2017
at a rate of 869 MW/yr, mostly for solar PV and wind power. Based on
these values, conservative assumptions have been made for the max-
imum annual new-build capacities (Ng

max) which are shown in Table 1.
However, for solar PV, CSP and wind, which have high future potential
(Table S1) but uncertain maximum sustainable growth rates, the max-
imum annual new-build capacities have been varied between 260 MW
and 750 MW, as discussed further in Section 4.2.1.

Regarding other parameters in Table 1, the total initial installed
capacity has been estimated based on all operating power plants in
2015. The technology lifespan has been defined for each technology
based on literature [52,53]. The capacity factors of the technologies in
2015 have been obtained from records of the system operation in that
year and the capacity factor by 2050 is an output value from the si-
mulation (Fig. 1). The year of decommissioning of current power plants
has been estimated based on the starting year of operation and the
lifespan of each power plant, the latter of which is based on 2015. Si-
milarly, current plants which are under construction have been in-
cluded in the model [52,53]. Tables S2 and S3 in the SI provide a
breakdown of the capacity undergoing decommissioning or construc-
tion in each year for which data are available.

The data for investment, fixed and variable costs, as well as the
learning rates and global cumulative installed capacity trend (Fig. S2)
for wind, solar PV and CSP have been obtained from literature. The
following assumptions have been made:

• The Chilean energy authority has set a carbon tax of $5/t CO2. Based
on literature [54,55], this tax is assumed to increase to $10/t CO2

from 2030 onwards.
• To estimate annualised investment costs, a discount rate of 7% is

assumed [56,57].
• Fuel costs have been obtained from US data based on their Free On

Board (FOB) price [58]. The Cost, Insurance and Freight (CIF) costs
have been estimated to reflect the fuel costs in Chile in any given
year (Fig. S3).

• Since biomass prices depend on the local market, the biomass costs
have been estimated on the basis of biomass production, processing
and transport costs in Chile [59]; these costs are assumed to remain
constant throughout the assessment period.

• The potential for biogas power has been estimated based on the

Coal
36.2%

Gas
16.5%

Oil
3.7%

Biomass  &  
biogas
3.3%

Hydro
35.1%

Wind
3.2%

Solar PV
2.0%

Fig. 2. Contribution of different sources to the total generation of electricity in
Chile in 2015 [44].

Fig. 3. Classification of technologies considered in the study (CSP: con-
centrating solar power).
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biogas production capacity of existing landfill sites (Table S3),
yielding a relatively low maximum of 1 GW. Therefore, a low annual
new-build capacity has been assumed of 25 MW/yr and zero fuel
cost has been considered for this technology since the biogas is
produced in landfill from waste. Other sources of biogas are not
considered due to a lack of data.

4.1.2. Technical and economic parameters for the ED model
The main assumptions considered for the ED model are shown in

Table 3. The relative storage values are presented in Figs. 4 and 5 and
the hourly profiles for hydropower, wind and solar power can be found
in Figs. S4–S6 in the SI. Merit order is established according to the
technologies’ marginal costs, which comprise variable and fuel costs as
well as carbon tax. As can be seen in Table 3, most renewable options
have low or zero marginal costs, due to low variable costs (for the
latter, see Table 2).

The selected base storage values for the two technologies with
storage (reservoir and CSP) are also given in Table 3, along with the
assumed storage capacity and the initial filling levels. To determine the
opportunity cost of using a unit of stored energy at the present time
(rather than in the future), a shadow price of the storage in reservoirs
and CSP can be estimated [60]. However, this is very challenging [61].
Therefore, a simple method for estimation of shadow price has been
used based on storage value of reservoir hydropower and CSP, focusing
on using the storage as efficiently as possible.

As Chile has large reservoir capacity at low prices, this technology is
used as backup for the variable renewable options (wind and solar PV).

A base storage value of $20/MWh has been selected to ensure the
readiness of reservoir power plants when other renewables are not
available. Furthermore, the dispatch of coal power can be delayed by
the dispatch of reservoir hydropower since coal power has a marginal

Table 1
Technical parameters considered for the power system expansion (PSE) model [52,53,62–64].

Parameters Technology

Coal Gas Oil Biomass Biogas Run-of-
river

Reservoir Wind Solar PV CSP Geothermal

Maximum new-build capacity
(MW/yr)

260 260 260 100 25 60 60 260–750 260–750 260–750 150

Initial installed capacity (MW) 4179 3722 3836 408 47 2726 3714 890 509 0 0
Current electricity sharea 36.2% 16.5% 3.7% 3.0% 0.3% 17.7% 17.4% 3.2% 2.0% – –
Lifespan (yr) 38 35 35 40 20 80 80 25 20 25 25
Current capacity factora 0.79 0.41 0.09 0.67 0.62 0.6 0.43 0.28 0.25 0.35 0.6
Maximum capacity factorb 0.8 0.8 0.8 0.8 0.8 0.6 0.43 0.32 0.25 0.35 0.8
Efficiencya 36% 46% 42% 18% 32%
Carbon emissions (kg.CO2/MJ) 98 62 89 – –
Calorific value (unit) 29,290 (MJ/

t)
1055 (MJ/
Nm3)

6120 (MJ/
bbl)

18,100 (MJ/
t)

–

a Data for 2015.
b The maximum capacity factor (CF) for PV, wind, reservoir and run-of-river reflect the annual capacity factor for each technology in 2015 [63]. The CF for CSP is

from literature [64].

Table 2
Economic parameters considered for the power system expansion (PSE) model.a

Parameters Technology

Coal Gas Oil Biomass Biogas Run-of-river Reservoir Wind Solar PV CSP Geothermal

Initial capital cost ($/kW)b 3000 1150 1150 3100 3500 4050 2200 1800 1800 9000 7800
Capital cost share for fixed costsb 2% 1% 1% 3.5% 3.5% 1% 1% 2% 1.5% 1% 1.5%
Variable costs ($/MWh)b 2 3 4 10 15 3 3 0 0 0 2
Learning ratec – – – – – – – 10% 15% 11%
Discount rate 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7%
Carbon emission tax 2015–2029 ($/t.CO2)d 5 5 5
Carbon emission tax 2030–2050 ($/t CO2) 10 10 10
Fuel costs (unit)e 83.2 ($/t) 7.4 ($/Nm3) 43.4 ($/bbl) 58.9 ($/t)

a All data for 2015.
b Source: [65].
c Source: [66,67].
d Source: [54,55].
e Data for coal, gas and oil from [58] and for biomass from [59].

Table 3
Input data assumed for the economic dispatch model [52,53].

Technology Merit ordera

($/MWh)
Base storage
value ($/MWh)

Storage
capacity (h)

Initial
filling level

Coalb 44
Gasb 91
Oilb 175
Biomassc 75
Biogasc 15
Run-of-riverc 3
Reservoir – 20 1670 35%
Windc 0
Solar PVc 0
CSP – 46 17 40%
Geothermalc 2

a Marginal costs: Variable costs + fuel costs + CO2 tax.
b Marginal cost estimated from variable costs assumed constant between

2015 and 2050 (see Table 2). Fuel costs in 2050 estimated from fuel cost trends
(see Table S3 and Eq. (9)) and carbon tax in 2050 of $10/t CO2 (see Table 2 and
Eq. (10)).

c Marginal costs estimated from variable costs assumed constant over the
period 2015–2050 (see Table 2). Biomass fuel costs also assumed constant over
the period (see Section 4.1.1).
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cost of $44/MWh, which is double that of reservoirs. A base storage
value of $46/MWh has been assumed for CSP to position its marginal
costs above coal’s marginal cost and reservoir hydropower’s storage
value, and also below biomass, gas and oil power marginal costs
(Table 3). This is necessary to enable CSP to support peak-load options.
Although reservoir and CSP storage values depend on the filling level,
the time of the year and/or hour of the day (Eq. (21)), the storage value
will vary around the base storage value. Ultimately, the storage value is
related to the utility of energy storage to the grid at any given time. For
example, CSP can have a storage value of zero between 23:00 and 4:00
and above $70/MWh when its storage filling level is below 60% (Figs. 4
and 5a) [from Eq. (21): 46 × 0.95 × 1.6 = 70]. The lower storage
value at night allows CSP to empty the storage, while during the day the
storage filling level increases to be available for peak-load times. Si-
milarly, reservoirs increase their storage value in summer when there is
lack of precipitation, reaching storage values above $35/MWh when
the filling level is below 40% [from Eq. (21): 20 × 1.4 × 1.25 = 35]
which eventually can be higher than coal and even CSP.

Different operating modes can be established for CSP with storage;
for example, as a base-load or peak-load dispatch mode. As mentioned
before, in this study CSP is considered as a peak-load option. This is
reflected in Fig. 5a which shows high relative storage values at high
solar radiation times of the day and before peak-load hours, after which
the relative storage value reduces until reaching zero at night.

The storage values for reservoir hydropower in Fig. 5b are based on
the inverse of water inflow records (precipitation) [63]. Therefore, in
winter and spring when high precipitation occurs, the relative storage
value is low for reservoirs (i.e. stored energy is cheap), leading to

hydropower being the first option to be dispatched after wind and solar
PV.

4.2. Electricity demand

The annual electricity demand in Chile is expected to increase by
2.2% in the period from 2015 to 2050 [68]. Based on this and a 7%
energy loss during transmission [52,53], the average load by 2050 has
been estimated at 18,261 MW. Fig. 6 shows the hourly load profile for
2050 which has been developed from historical records of ten years of
power dispatch [63] by applying typical hourly load curves to the ex-
pected demand in the 2050. Thus, the model assumes that the load
profile in Chile does not change significantly over the period of as-
sessment, with the highest loads occurring between 8:00 and 21:00 in
the autumn and winter months. The high load during the day is largely
due to the mining industry which consumes 54% of electricity and has a
constant load during the day [69].

4.2.1. Scenarios – Rationale and constraints
The two future scenarios – BAU and RE – have been defined based

on the Chilean energy policy of 2015 which set a minimum target of
70% for the contribution of renewables to the electricity supply in 2050
[47]. BAU has no constraints on the type of technology deployed and,
therefore, all 11 options (Table 1) can be chosen by the model. The RE
scenario imposes the constraint that 100% of the electricity should be
provided by renewable options by 2050. Also, in order to increase the
electricity from wind, solar PV and other renewables, the government
enacted a quota system with a target of 20% of non-conventional re-
newable energy electricity by 2025, starting with 10% in 2015 [70].
This constraint has been implemented in all scenarios as shown in
Table 4.

The annual new-build capacity limit is a significant parameter that
may distinguish the scenarios developed by the model. Since wind and
solar PV are becoming more competitive and have high potential, along
with CSP, the BAU and RE scenarios are further divided into two sub-
scenarios, based on the cap on the annual new-build capacity for solar
PV, CSP and wind power:

(i) one with a low annual new-build capacity limit of 260 MW; and
(ii) another with a high value of 750 MW.

These two values have been obtained after initial testing of different
annual new-build capacity values which demonstrated that values
below 260 MW and above 750 MW resulted in infeasible scenarios. This
is because in the lower range the model does not have enough new-
build capacity to meet the future demand. In the higher range, the
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model considers higher investment for solar and wind with large energy
spillage and reduced dispatch of the other technologies, which in turn
leads the model to look for new-build capacity to meet the demand,
until it runs out of new-build capacity after some iterations. Therefore,
the four resulting sub-scenarios are referred to as BAU260, BAU750,
RE260 and RE750. These are summarised in Table 4 with reference to the
constraints described in Section 3.1.1.

A sensitivity analysis has also been carried out to evaluate the extent
to which the technologies with storage (CSP and reservoir hydropower)
help to keep electricity costs low while providing flexibility. Therefore,
two additional BAU and RE scenarios have been modelled: (i) without
CSP; and (ii) without new-build capacity for hydropower (run-of-river
and reservoirs).

5. Results and discussion

The following sections discuss the outputs of the FuturES framework
applied to the case of Chile. First, the makeup of the optimised sce-
narios obtained through the modelling is discussed, followed by their
feasibility, economic assessment and a sensitivity analysis. Finally, the
limitations of the study and recommended future work are outlined.

5.1. Installed capacity, electricity contribution and capacity factors

A summary of the main results of the optimisation model is pre-
sented in Table 5 and Fig. 7. These show the estimated installed ca-
pacity, capacity factors and electricity generation of different sources
taking into account the annual new-build capacity limits of 260 MW
(BAU260 and RE260) and 750 MW (BAU750 and RE750).

It can be seen in Table 5 for BAU260 that biogas, wind and geo-
thermal power have higher capacity factors than in RE260. Furthermore,
capacity factors are higher in BAU260 than in BAU750. These variations
can be explained as follows. Reservoir and run-of-river hydropower,
wind, solar PV and CSP depend strongly on the resource availability
(weather conditions). Therefore, it is expected that the capacity factors
of these options should be derived from their local resource availability
(Table 1). In BAU260, the installed capacities of these technologies are
maximised according to their expected capacity factors. However, in
other scenarios it is possible to produce excess energy from these
technologies at certain times, leading to energy spillage and, hence, the
capacity factors become lower. This is observable, for instance, for wind
power in RE260 where the capacity factor is 30% instead of 32%

(Table 5) due to some of the harvested wind energy exceeding demand
at the time of generation.

In BAU750 and RE750, the energy spill is even higher. For example,
run-of-river has capacity factors of 47% and 49% in BAU750 and RE750,
respectively, instead of its potential capacity factor of 60%. In the case
of wind, BAU750 and RE750 have a capacity factor of 25%, 7 percentage
points below the maximum capacity factor. For both run-of-river and
wind, this energy spillage occurs because in these scenarios the in-
stalled capacity of solar PV is larger than the demand around midday,
leaving the other power options without demand to fulfil. Reservoir and
CSP do not show energy spillage in any scenario, since both options
store energy to be dispatched later.

In terms of the contribution of different technologies to the elec-
tricity mix, it is notable from Fig. 7 that the only fossil fuel option re-
tained in the BAU scenarios by 2050 is coal power, which decreases
from 57% at present to 19% in BAU260 and 10% in BAU750. This is due
to the fact that, even when fossil fuel options are allowed by the con-
straints in the model, by 2050 gas and oil power are no longer cost
competitive against coal and the renewables.

Over the period of 2015 to 2050, the installed capacity of coal in-
creases from 4179 MW to 9876 MW in BAU260 and to 6500 MW in
BAU750 despite its decreasing share in the mix. This is partly due to the
doubling of the electricity demand over the same period, but also due to
a significant reduction of the capacity factor from 79% to 36% in
BAU260 and to 28% in BAU750. This is a consequence of the increase in
solar PV and wind power, the fluctuations and variability of which force
the other technologies to reduce their capacity factors via increased
regularity in the ramping up and down of their output.

Solar PV increases its contribution significantly in all the scenarios,
from 2% at present to 20–33% in 2050 due to the large Chilean solar
resource and rapidly decreasing costs. In each scenario it is the option
with the highest contribution by 2050, followed by wind and run-of-
river hydropower. The contribution of reservoir power decreases from
17% at present to approximately 14% in all scenarios as the other re-
newables become more cost competitive. Nevertheless, its overall in-
stalled capacity still increases by 60–67% compared to the present,
suggesting that hydropower remains competitive and the capacity re-
tention constraint described in Section 3.1.1.6 may not be necessary to
ensure continued use of reservoirs.

Geothermal power has a higher contribution in the RE scenarios
(9% in RE260 and 14% RE750) in order to fill, in part, the electricity
generation gap left by fossil fuels after their phasing out. Finally, biogas

Fig. 6. Load profile (MW) in 2050 estimated based on historical records for an average load of 18,261 MW.

Table 4
2050 scenarios and key constraints.

Constraints Scenarios

Description Section describing constraints BAU260 BAU750 RE260 RE750

Maximum total new-build capacity (MW/yr) for solar PV, CSP & wind 3.1.1.4 260 750 260 750
Fossil-based power phased out by 2050 3.1.1.5 No No Yes Yes
Hydropower options replaced at end of lifetime 3.1.1.6 Yes Yes Yes Yes
Non-conventional renewable electricity quota in the mix in 2015 3.1.1.7 10% 10% 10% 10%
Non-conventional renewable electricity quota in the mix in 2025 3.1.1.7 20% 20% 20% 20%
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has the lowest share in the electricity mix (< 4% in all scenarios) due to
its low annual new-build capacity.

Overall, BAU260 has the lowest total installed capacity of
49,980 MW (Table 5). This is due to the absence of energy spillage,
together with the lowest installed capacity of solar PV and wind. By
contrast, BAU750 has the largest installed capacity of 63,805 MW caused
by the high energy spillage of run-of-river, wind and solar PV power
and large installed capacity of solar PV, wind and coal power plants.
Because the model chooses coal as an economic option together with
solar PV, this enables high new-build capacity of both power options,
even though the high capacity of solar PV leads to a low capacity factor
for coal (28%). While the RE scenarios have lower energy spillage than
BAU750, they have total installed capacity in between BAU260 and
BAU750.

5.2. Scenario feasibility

The PSE model prioritises technologies with low levelised costs of
electricity, while the ED model prioritises technologies with low mar-
ginal costs (variable costs, fuel costs and carbon tax). After running the
two models iteratively (see Fig. 1), it can be seen in Fig. 8 that tech-
nologies with low investment costs and low marginal costs (wind, solar

PV, run-of-river and reservoirs) are prioritised, while high marginal cost
options (oil, gas and biomass) are avoided. For example, oil and gas
power have the lowest investment costs (Table 2), but high marginal
costs (Table 3). In addition to this, since the ED model considers these
options at peak-load times, their capacity factors are lower (Table 5)
leading to high LCOE and, consequently, new-build capacity is dis-
couraged by the PSE model. A worse situation is found in the case of
biomass power since it has both higher investment and higher fuel costs
(Table 2) as a result of the low calorific value of biomass (18,100 MJ/t)
and low efficiency (18%) of the power plants.

The installed capacities of CSP are 4831 MW in BAU750, 5524 MW in
RE260 and 2073 MW in RE750, (Table 5). These allow CSP to attain the
maximum capacity factor due to a high availability of solar radiation,
with a LCOE of $139/MWh across the scenarios. When solar radiation is
low, as in autumn and winter, CSP seldom has excess energy to store
and therefore can barely contribute to grid flexibility for BAU750, RE260

and RE750. Hence, in those periods, hydropower reservoirs provide the
main contribution at peak-load times, supplemented by biomass (except
for BAU260 which relies mostly on reservoirs).

Wind and solar PV have the highest contributions to electricity
generation in all the scenarios (17–21% in BAU and 20–33% in RE).
This is a result of their low capital costs estimated on the basis of their

Table 5
Installed capacity and capacity factors for the technologies in the proposed 2050 scenarios.a

Technologies 2015 BAU260 BAU750 RE260 RE750

Coal Capacity (MW) 4179 9876 6500 – –
Capacity factor (%) 79% 36% 28%

Gas Capacity (MW) 3722 – – – –
Capacity factor (%) 41%

Oil Capacity (MW) 3836 – – – –
Capacity factor (%) 9%

Biomass Capacity (MW) 408 – – 4000 4000
Capacity factor (%) 67% 3% 4%

Biogas Capacity (MW) 47 635 618 1073 449
Capacity factor (%) 62% 70% 55% 66% 57%

Run-of-river Capacity (MW) 2726 5974 5804 6418 5632
Capacity factor (%) 60% 60% 47% 60% 49%

Reservoir Capacity (MW) 3714 5928 5931 6212 6092
Capacity factor (%) 43% 43% 43% 43% 43%

Wind Capacity (MW) 890 11,741 12,419 12,413 13,081
Capacity factor (%) 32% 32% 25% 30% 25%

Solar PV Capacity (MW) 509 14,611 27,702 15,111 25,807
Capacity factor (%) 25% 25% 22% 25% 23%

Concentrating solar power Capacity (MW) – – 4831 5524 2073
Capacity factor (%) 35% 35% 35%

Geothermal Capacity (MW) – 1215 – 2642 5000
Capacity factor (%) 67% 59% 53%

Total Capacity (MW) 20,031 49,980 63,805 53,394 62,134

a BAU: Business as usual; RE: Renewable electricity. The subscripts “260” and “750” refer to the annual cap on the new-build capacity in MW for solar PV,
concentrating solar power and wind as described in Section 4.2.1.

Fig. 7. Contribution of different technologies to electricity generation in the four scenarios [BAU: Business as usual; RE: Renewable electricity. CSP: concentrating
solar power. The subscripts “260” and “750” refer to the annual cap on the new-build capacity in MW for solar PV, concentrating solar power and wind.]
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learning rates, which lead to the 2050 LCOEs of $45–50/MWh for solar
PV and $49–63/MWh for wind power. In BAU750, wind has its lowest
capacity factor of 25%, causing an increase in the LCOE ($64/MWh)
due to electricity spillage. Even though higher installed capacities of
wind and solar PV lead to the spillage, investments in these two options
are prioritised to the detriment of other renewable options due to their
very low LCOEs.

As illustrated in Figs. 9 and 10, the higher contribution of hydro-
power reservoirs in the RE scenarios occurs in autumn when solar ra-
diation is low. Therefore, reservoirs provide seasonal storage and sup-
port the fluctuations in solar and wind power, assuming that sufficient
water inflow is available. Although hydropower reservoirs have enough
storage capacity, their maximum dispatchable load is not usually suf-
ficient to replace the missing solar PV, CSP and wind output during
autumn and winter due to the very high installed capacities of those
technologies in the RE scenarios. Hence, biomass is dispatched for short
periods as the only other flexible non-fossil technology. This low utili-
sation of the biomass plants leads to very high LCOEs of up to $1295/
MWh. Such a high cost would likely not be tolerated by the market
without other financing mechanisms in addition to the standard energy
market as included in the PSE model. An example would be the inclu-
sion of a capacity market for reserve margin in order to provide a

supplementary financing mechanism for technologies that contribute to
grid flexibility. Such considerations are outside the scope of this work
and could be explored as part of future research.

In summary, it can be seen that all the scenarios are fully feasible in
terms of grid stability and electricity supply, including the ones with
100% renewables, demonstrating that it is possible to deploy such
systems in the future. The following section discusses the economic
feasibility of the scenarios.

5.3. Economic assessment

The optimised LCOEs obtained through the FuturES framework are
presented in Fig. 11 for each scenario. As indicated, the two BAU sce-
narios have the lowest LCOE by 2050 ($72.7/MWh in BAU260 and
$77.3/MWh in BAU750), with up to 6% reduction compared to the
current situation ($77.6/MWh). The RE scenarios show LCOEs that are
5–12% ($81.3–86.9/MWh) higher than today’s electricity cost and
12–20% higher than in BAU260.

Based on the learning rates assumed for solar PV, CSP and wind
[66,67], their costs are expected to decrease greatly over the coming
decades. Therefore, these options are systematically selected as new-
build capacity to meet the demand. As discussed above, biomass power
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Fig. 8. Levelised cost of electricity (LCOE) in 2050 for different technologies. [BAU: Business as usual; RE; Renewable electricity. The legend refers to the annual cap
on the new-build capacity in MW for solar PV, concentrating solar power and wind.]

Summer        Autumn Summer        Autumn 

Fig. 9. Load dispatch for a sample of seven days for the BAU and RE scenarios for the annual new-build capacity limit of 260 MW for solar PV, concentrating solar
power and wind. [BAU: Business as usual; RE: Renewable electricity. CSP: concentrating solar power.]

C. Gaete-Morales, et al. Applied Energy 250 (2019) 1657–1672

1668



has been included in both RE scenarios, but the very low capacity
factors (3–4%) and therefore high LCOEs have discouraged its invest-
ment.

Regarding the total system cost (Fig. 12), the RE scenarios are the
most expensive in 2050 with total costs of $356–361 bn, while the BAU

scenarios are in the range of $337–338 bn. The higher costs of the RE
scenarios are due to higher contributions of biogas and geothermal
power as base-load options and the energy spillage from wind and run-
of-river. This in turn leads to lower capacity factors (25% for wind and
49% for run-of-river) than their resource availability could support
(32% for wind and 60% for run-of-river), as can be observed in Table 5.
When RE260 is compared with RE750, the higher annual new-build ca-
pacity of 750 MW for wind, solar PV and CSP in RE750 allows wind and
solar PV to have greater installed capacity than in RE260. However,
during periods of high resource availability, this high installed capacity
causes the generation of wind and solar PV to be greater than the load
(demand). Therefore, energy spillage occurs and the capacity factor of
other generators, such as run-of-river, is reduced, which leads to RE750

having higher overall system costs. These higher costs could potentially
be offset if the energy spillage could instead be put to productive use
elsewhere in the economy via some form of demand-side management,
the consideration of which is beyond the scope of the current study.

Fig. 12 also shows that capital costs contribute the most (67%) to
the total system costs in the BAU scenarios, followed by fuel (17%) and
fixed costs (13%); carbon tax adds a further 3%. In the RE scenarios, the
contribution of the capital costs is even higher (70%) but that of the fuel
costs is lower (12%) than in the BAU scenarios; the fixed costs account
for 17% of the total.

Summer        Autumn Summer        Autumnn

Fig. 10. Load dispatch for a sample of seven days for the BAU and RE scenarios for the annual new-build capacity limit of 750 MW for solar PV, concentrating solar
power and wind. [BAU: Business as usual; RE: Renewable electricity. CSP: concentrating solar power.]

Fig. 11. Estimated levelised cost of electricity in different scenarios compared
to the current situation. [BAU: Business as usual; RE; Renewable electricity. The
subscripts “260” and “750” refer to the annual cap on the new-build capacity in
MW for solar PV, concentrating solar power and wind.]

Fig. 12. Total system costs in 2050 and contribution analysis by scenario. [BAU: Business as usual; RE; Renewable electricity. The legend refers to the annual cap on
the new-build capacity in MW for solar PV, concentrating solar power and wind.]
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In addition to the capital costs, the cumulative investment has also
been estimated (Fig. 13). This represents the investment cost of power
plants that need to come online in a specific year and is aggregated over
the period 2015–2050. This differs from the capital costs which have
been estimated considering annualisation of the investment of each
technology, taking into account lifespan and discount rate while in-
cluding both existing and new capacity. As can be seen in Fig. 13, the
BAU260 and BAU750 scenarios have the lowest cumulative investment,
estimated at $123 and $145 bn, respectively. The latter is close to the
investment of $147 bn needed in RE260, while in RE750 the value is
slightly higher at $157 bn.

As illustrated in Fig. 13, the BAU scenarios have lower investment in
biogas, biomass and gas power due to their LCOEs being higher than
coal, wind, solar PV and run-of-river. However, the RE scenarios exhibit
lower investment in biogas due to its low annual new-build capacity
and its high LCOE, but also, in coal, gas and oil power due to the fossil
fuel power phase-out constraint.

In relation to low and high annual new-build capacity limits (260 or
750 MW), it can be seen that the cumulative investments are larger in
scenarios with the higher limit due to the increased investment in solar
PV and wind in both the BAU and RE scenarios (Fig. 13). It is also
notable that BAU750 has lower investment in coal power than BAU260

(reducing from $27 to $17 bn) due to the model diverting the funding
into renewable projects, most of which become cheaper than coal
power in future.

Across all scenarios, there is a clear trend of investments led by solar
PV (with an average investment over the period of $31 bn), wind ($23
bn) and run-of-river ($20 bn). In the RE scenarios, geothermal power
and CSP also have significant contributions ($34 and $18 bn, respec-
tively). The average annual investment estimated across all the sce-
narios is $4.0 ± 0.4 bn/yr.

5.4. Sensitivity analysis

A sensitivity analysis has been performed to investigate the impacts
of storage on the costs by estimating the LCOE of systems without CSP
and new hydropower (reservoir and run-of-river) capacity. The results
are shown in Fig. 14 which compares the LCOE of the original scenarios
with eight new scenarios: BAU260-No CSP, BAU260-No new hydro,
BAU750-No CSP, BAU750-No new hydro, RE260-No CSP, RE260-No new hydro,
RE750-No CSP and RE750-No new hydro.

Since in the base case the BAU260 scenario does not have CSP, the
results show that there are no differences in the LCOE between this and
BAU260-No CSP scenario. The remaining scenarios without CSP have only
marginally lower LCOE than their equivalent base-case scenarios

(Fig. 14). This outcome appears counterintuitive since the optimisation
model should choose the minimum cost option, and thus the four base-
case scenarios should be the cheapest within their respective con-
straints. This outcome can be explained as follows. In the base-case
scenario, CSP has zero marginal cost at peak-load times; hence, the
model selects this option in preference to geothermal power, leaving
the latter with lower capacity factor. As a consequence, geothermal has
higher LCOE than CSP in the presence of CSP. However, when geo-
thermal power is not in competition with CSP, it is dispatched more
frequently, attaining a high capacity factor and a lower LCOE than CSP.

While the cost impacts of omitting CSP from the mix are minimal,
the effect of omitting new-build hydropower is much more pronounced:
the BAU scenarios with no new hydropower have 8–13% higher LCOEs
than the base-case scenarios, while the RE scenarios with no new hydro
are 13–18% more expensive than their base-case equivalents. The
seasonal storage capacity of reservoirs, along with their relatively low
investment costs per unit capacity, enable both reservoirs and run-of
river to play a critical role in helping to keep the electricity costs low
while maintaining flexibility in the system.

5.5. Advantages, limitations and recommendations for future research

This study has been developed based on a simplified representation
of complex interactions in power systems with as reasonable as possible
considerations of the main aspects that drive the power market. The
main advantages of the proposed framework include:

• estimation of investment needed for different power technologies
and the whole system up to 2050;

• high penetration of renewables while maintaining the system’s
flexibility and matching supply and demand; and

• the inclusion of storage with concentrating solar power serving as
short-term and hydropower reservoir as long-term storage.

Some of the limitations of this work are that:

• no distance and site-specific differences have been considered be-
tween the technological options. In that sense, transmission and
distribution power constraints are assumed equal for all 11 tech-
nologies;

• although hydropower has been represented by two distinct power
options (reservoir and run-of-river), in reality, interactions occur
among those two options, such as in serial arrangement of plants
with the effect of upstream inflows and water infiltration; these
relationships have not been taken into account; and

Fig. 13. Total cumulative investment by technology. [BAU: Business as usual; RE; Renewable electricity. The legend refers to the annual cap on the new-build
capacity in MW for solar PV, concentrating solar power (CSP) and wind. Geo: geothermal.]
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• inflation has not been considered.

To improve the FuturES framework and its constituent models, fu-
ture studies in this field should include the following:

• consideration of technological improvements for biomass power to
find out if this option can be more competitive as well as its con-
sideration for peak-load dispatch;

• estimation of biogas potential and its production cost, since in this
study only landfill gas with zero marginal cost is considered, while
the high installed capacity estimated in the RE scenarios would re-
quire additional production of biogas;

• evaluation of the effects of including other energy storage systems
(e.g. pumped storage and batteries);

• integration of small- and medium-scale distributed energy genera-
tion systems into the power system;

• investigation into the effects of climate change on water availability
for hydropower generation;

• assessment of alternative uses of energy spillage, such as hydrogen
production, water desalination, energy export/import and regional
grid integration; and

• estimation of future load profiles taking into account electric ve-
hicles, electrical heating devices and consumer behavioural
changes.

6. Conclusions

This paper has presented a new framework for development of cost-
optimal electricity systems with high penetration of renewables. The
framework enables consideration of different power technologies taking
into account their technical and economic characteristics. Some of its
key advantages over other frameworks include the ability to consider
high penetration of renewables while maintaining the system’s flex-
ibility and matching supply with demand as well as the inclusion of
short and long-term storage.

The application of the FuturES framework has been illustrated
through the development of scenarios for Chile for the year 2050. The
results reveal that the cost-optimal Business as usual (BAU) scenarios
comprise 81–90% renewables. This is close to the Renewable electricity
(RE) scenarios both of which consist of 100% renewables. The RE
scenarios show sufficient flexibility in matching demand and supply,
despite solar PV and wind power having a combined contribution of
around 50%.

Run-of-river hydropower is used as a base-load option in all the
scenarios, while coal power provides base-load only in the BAU

scenarios. As gas and oil power have high marginal costs, they operate
at low capacity factors within the modelled power systems, which leads
to higher levelised costs of electricity (LCOE) than for the hydropower
options, solar PV and wind. Consequently, no gas or oil capacity is
selected by the model in either of the BAU scenarios. Biomass also has
high marginal costs and hence very low capacity factors (3–4%).
Together with high capital costs, this leads to a LCOE of biomass in
excess of $1295/MWh. Thus, this option is only retained in the RE
scenarios to substitute for missing solar generation in the winter
months.

The BAU scenarios have lower costs than today ($72.7 and $77.3 vs
$77.6/MWh), while the RE scenarios are up to 12% more expensive
than at present. Compared to BAU, they have 12–20% higher costs. The
cumulative investment across the scenarios is between $123 and $157
bn, requiring an annual average investment of $4.0 ± 0.4 bn.
Reservoir and run-of-river hydropower are crucial for keeping a low
cost of electricity: excluding hydropower increases the costs of the
system by 8–18% (up to $102.9/MWh).

If all the costs are considered, the BAU scenarios are the most
economical, although this means that the coal power capacity would
double. All the scenarios sit within approximately ± 10% of the present
system costs.

This paper has demonstrated that the FuturES framework is a
powerful tool for providing economic and technical insights into the
challenges of achieving cost-efficient power systems with high pene-
tration of renewables. The outputs of the framework can also be used
for analysing the environmental and social consequences of the re-
sulting scenarios, helping to identify overall the most sustainable con-
figurations of future electricity systems.
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